login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195262
G.f.: A(x) = Sum_{n>=0} x^n*A(x)^A001969(n+1), where A001969 lists numbers with an even number of 1's in their binary expansion.
1
1, 1, 4, 21, 125, 805, 5459, 38403, 277667, 2050771, 15405655, 117344350, 904175038, 7035182178, 55197856415, 436221495843, 3469249248383, 27744896161177, 222987118478532, 1800106801933350, 14589674016207940, 118674224290447850, 968474133792224994
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 125*x^4 + 805*x^5 + 5459*x^6 +...
where
A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^6 + x^4*A(x)^9 + x^5*A(x)^10 + x^6*A(x)^12 + x^7*A(x)^15 + x^8*A(x)^17 +...
and exponents A001969(n) begin:
[0,3,5,6,9,10,12,15,17,18,20,23,24,27,29,30,33,34,36,39,40,...].
PROG
(PARI) {A000120(n)=n-sum(k=1, #binary(n), floor(n/2^k))}
{A001969(n) = (1/2)*(4*n+1-(-1)^A000120(n))}
{a(n)=local(A=1+x+x*O(x^n)); for(k=1, n, A=1+sum(j=1, n, x^j*A^A001969(j))); polcoeff(A, n)}
CROSSREFS
Cf. A001969 (evil numbers), A195261.
Sequence in context: A093965 A370545 A366115 * A162480 A275758 A003168
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2011
STATUS
approved