login
A086616
Partial sums of the large Schroeder numbers (A006318).
15
1, 3, 9, 31, 121, 515, 2321, 10879, 52465, 258563, 1296281, 6589727, 33887465, 175966211, 921353249, 4858956287, 25786112993, 137604139011, 737922992937, 3974647310111, 21493266631001, 116642921832963, 635074797251889, 3467998148181631, 18989465797056721, 104239408386028035
OFFSET
0,2
COMMENTS
Row sums of triangle A086614. - Paul D. Hanna, Jul 24 2003
Hankel transform is A136577(n+1). - Paul Barry, Jun 03 2009
LINKS
FORMULA
G.f.: A(x) = 1/(1 - x)^2 + x*A(x)^2.
a(1) = 1 and a(n) = n + Sum_{i=1..n-1} a(i)*a(n-i) for n >= 2. - Benoit Cloitre, Mar 16 2004
G.f.: (1 - x - sqrt(1 - 6*x + x^2))/(2*x*(1 - x)). Cf. A001003. - Ralf Stephan, Mar 23 2004
a(n) = Sum_{k=0..n} C(n+k+1, 2*k+1) * A000108(k). - Paul Barry, Jun 03 2009
Recurrence: (n+1)*a(n) = (7*n-2)*a(n-1) - (7*n-5)*a(n-2) + (n-2)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
A(x) = 1/(1 - x)^2 * c(x/(1-x^2)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Aug 29 2024
EXAMPLE
a(1) = 2 + 1 = 3;
a(2) = 3 + 4 + 2 = 9;
a(3) = 4 + 10 + 12 + 5 = 31;
a(4) = 5 + 20 + 42 + 40 + 14 = 121.
MATHEMATICA
Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1-x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(Sage) # Generalized algorithm of L. Seidel
def A086616_list(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 2; R = []
for i in range(2*n) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
else :
for k in range(1, h, 1) : D[k] += D[k-1]
R.append(D[h-1]); h += 1;
b = not b
return R
A086616_list(23) # Peter Luschny, Jun 02 2012
(PARI) x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*x*(1-x))) \\ Joerg Arndt, May 10 2013
CROSSREFS
Cf. A086614 (triangle), A086615 (antidiagonal sums).
Cf. A006318.
Sequence in context: A377954 A066571 A087648 * A040027 A182968 A071603
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jul 24 2003
EXTENSIONS
Name changed using a comment of Emeric Deutsch from Dec 20 2004. - Peter Luschny, Jun 03 2012
STATUS
approved