OFFSET
0,5
COMMENTS
LINKS
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
FORMULA
As a triangle, T(n, k)=sum{j=0..n-k, C(n-k, j)C(k, j)C(j)}; T(n, k)=sum{j=0..n, C(n-k, n-j)C(k, j-k)C(j-k)}; T(n, k)=if(k<=n, sum{j=0..n, C(k, j)C(n-k, n-j)C(k-j)}, 0).
As a square array, T(n, k)=sum{j=0..n, C(n, j)C(k, j)C(j)}; As a square array, T(n, k)=sum{j=0..n+k, C(n, n+k-j)C(k, j-k)C(j-k)}; column k has g.f. sum{j=0..k, C(k, j)C(j)(x/(1-x))^j}x^k/(1-x).
G.f.: (1-sqrt(1-(4*x^2*y)/((1-x)*(1-x*y))))/(2*x^2*y). - Vladimir Kruchinin, Jan 15 2018
EXAMPLE
Rows begin:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 7, 13, 21, 31, 43, 57, ...
1, 4, 13, 33, 69, 126, 209, 323, ...
1, 5, 21, 69, 183, 411, 815, 1471, ...
1, 6, 31, 126, 411, 1118, 2633, 5538, ...
1, 7, 43, 209, 815, 2633, 7281, 17739, ...
1, 8, 57, 323, 1471, 5538, 17739, 49626, ...
As a triangle:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 13, 5, 1;
1, 6, 21, 33, 21, 6, 1;
1, 7, 31, 69, 69, 31, 7, 1;
1, 8, 43, 126, 183, 126, 43, 8, 1;
MATHEMATICA
T[n_, k_] := Sum[Binomial[n, j] Binomial[k, j] CatalanNumber[j], {j, 0, n}];
Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 02 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 24 2003
EXTENSIONS
Additional comments from Paul Barry, Nov 17 2005
Edited by N. J. A. Sloane, Oct 16 2006
STATUS
approved