login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101515
Symmetric square array, read by antidiagonals, such that the inverse binomial transform of row n forms the sequence: {C(n,k)*A101514(k), 0<=k<=n}, where A101514 equals the main diagonal shift right.
2
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 35, 21, 6, 1, 1, 7, 31, 77, 77, 31, 7, 1, 1, 8, 43, 146, 236, 146, 43, 8, 1, 1, 9, 57, 249, 596, 596, 249, 57, 9, 1, 1, 10, 73, 393, 1290, 2037, 1290, 393, 73, 10, 1, 1, 11, 91, 585, 2486, 5772, 5772, 2486, 585
OFFSET
0,5
COMMENTS
The main diagonal equals A101514 shift one place left. The antidiagonal sums form A101516.
EXAMPLE
Rows begin:
[_1,1,1,1,1,1,1,1,1,...],
[1,_2,3,4,5,6,7,8,9,...],
[1,3,_7,13,21,31,43,57,73,...],
[1,4,13,_35,77,146,249,393,585,...],
[1,5,21,77,_236,596,1290,2486,4387,...],
[1,6,31,146,596,_2037,5772,13987,29987,...],
[1,7,43,249,1290,5772,_21695,67943,181811,...],
[1,8,57,393,2486,13987,67943,_277966,951051,...],
[1,9,73,585,4387,29987,181811,951051,_4198635,...],...
The inverse binomial transform of the rows of this array are generated
from the products of the main diagonal with rows of Pascal's triangle:
BINOMIAL[1*1] = [_1,1,1,1,1,1,1,1,1,...],
BINOMIAL[1*1,1*1] = [1,_2,3,4,5,6,7,8,9,...],
BINOMIAL[1*1,1*2,2*1] = [1,3,_7,13,21,31,43,57,73,...],
BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,_35,77,146,249,393,...],
BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,_236,596,1290,...],
BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,_2037,...],...
PROG
(PARI) T(n, k)=if(n<0 || k<0, 0, if(n==0 || k==0, 1, if(n>k, T(k, n), 1+sum(j=1, k, binomial(k, j)*binomial(n, j)*T(j-1, j-1)); )))
CROSSREFS
Sequence in context: A086617 A094526 A088699 * A327913 A028657 A053534
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 06 2004
STATUS
approved