login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Symmetric square array, read by antidiagonals, such that the inverse binomial transform of row n forms the sequence: {C(n,k)*A101514(k), 0<=k<=n}, where A101514 equals the main diagonal shift right.
2

%I #5 Jun 13 2017 22:17:09

%S 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,21,35,21,6,1,1,7,31,

%T 77,77,31,7,1,1,8,43,146,236,146,43,8,1,1,9,57,249,596,596,249,57,9,1,

%U 1,10,73,393,1290,2037,1290,393,73,10,1,1,11,91,585,2486,5772,5772,2486,585

%N Symmetric square array, read by antidiagonals, such that the inverse binomial transform of row n forms the sequence: {C(n,k)*A101514(k), 0<=k<=n}, where A101514 equals the main diagonal shift right.

%C The main diagonal equals A101514 shift one place left. The antidiagonal sums form A101516.

%e Rows begin:

%e [_1,1,1,1,1,1,1,1,1,...],

%e [1,_2,3,4,5,6,7,8,9,...],

%e [1,3,_7,13,21,31,43,57,73,...],

%e [1,4,13,_35,77,146,249,393,585,...],

%e [1,5,21,77,_236,596,1290,2486,4387,...],

%e [1,6,31,146,596,_2037,5772,13987,29987,...],

%e [1,7,43,249,1290,5772,_21695,67943,181811,...],

%e [1,8,57,393,2486,13987,67943,_277966,951051,...],

%e [1,9,73,585,4387,29987,181811,951051,_4198635,...],...

%e The inverse binomial transform of the rows of this array are generated

%e from the products of the main diagonal with rows of Pascal's triangle:

%e BINOMIAL[1*1] = [_1,1,1,1,1,1,1,1,1,...],

%e BINOMIAL[1*1,1*1] = [1,_2,3,4,5,6,7,8,9,...],

%e BINOMIAL[1*1,1*2,2*1] = [1,3,_7,13,21,31,43,57,73,...],

%e BINOMIAL[1*1,1*3,2*3,7*1] = [1,4,13,_35,77,146,249,393,...],

%e BINOMIAL[1*1,1*4,2*6,7*4,35*1] = [1,5,21,77,_236,596,1290,...],

%e BINOMIAL[1*1,1*5,2*10,7*10,35*5,236*1] = [1,6,31,146,596,_2037,...],...

%o (PARI) T(n,k)=if(n<0 || k<0,0,if(n==0 || k==0,1,if(n>k,T(k,n), 1+sum(j=1,k,binomial(k,j)*binomial(n,j)*T(j-1,j-1));)))

%Y Cf. A101514, A101516.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Dec 06 2004