OFFSET
0,5
LINKS
W. M. B. Dukes, Tables of matroids.
W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007 (see p. 7).
Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
FORMULA
From Petros Hadjicostas, Oct 10 2019: (Start)
T(n,0) = 1 for n >= 0.
T(n,1) = n for n >= 1.
T(n,2) = -n + Sum_{k = 1..n} p(k) for n >= 2, where p(k) = A000041(k). [Dukes (2004), Theorem 2.1.] (End)
EXAMPLE
The triangle, transposed, begins:
k...n=0...n=1...n=2...n=3...n=4...n=5...n=6...n=7...n=8...n=9...
0.|.1.....1.....1.....1.....1.....1.....1.....1.....1.......1.....
1.|.......1.....2.....3.....4.....5.....6.....7.....8.......9.....
2.|.............1.....3.....7....13....23....37....58......87.....
3.|...................1.....4....13....38...108...325....1275.....
4.|.........................1.....5....23...108...940..190214.....
5.|...............................1.....6....37...325..190214.....
6.|.....................................1.....7....58....1275.....
7.|...........................................1.....8......87.....
8.|.................................................1.......9.....
9.|.........................................................1.....
Sum.1.....2.....4.....8....17....38....98...306..1724..383172
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Dec 30 2000
EXTENSIONS
More terms from Jonathan Vos Post, Feb 14 2007
STATUS
approved