login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A053537
Expansion of 1/((1+5*x)*(1-15*x)).
2
1, 10, 175, 2500, 38125, 568750, 8546875, 128125000, 1922265625, 28832031250, 432490234375, 6487304687500, 97309814453125, 1459645996093750, 21894696044921875, 328420410156250000, 4926306304931640625, 73894593811035156250, 1108418910980224609375
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (5^n/4)*(3^(n+1) + (-1)^n).
a(n) = 10*a(n-1) + 75*a(n-2), with a(0)=1, a(1)=10.
E.g.f.: (3*exp(15*x) + exp(-5*x))/4. - G. C. Greubel, May 16 2019
MATHEMATICA
LinearRecurrence[{10, 75}, {1, 10}, 30] (* G. C. Greubel, May 16 2019 *)
CoefficientList[Series[1/((1+5x)(1-15x)), {x, 0, 20}], x] (* Harvey P. Dale, Jun 15 2022 *)
PROG
(PARI) Vec(1/((1+5*x)*(1-15*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+5*x)*(1-15*x)) )); // G. C. Greubel, May 16 2019
(Sage) (1/((1+5*x)*(1-15*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
(GAP) a:=[1, 10];; for n in [3..30] do a[n]:=10*a[n-1]+75*a[n-2]; od; a; # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A015518.
Sequence in context: A304445 A268936 A144516 * A049380 A302105 A200060
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, May 16 2019
STATUS
approved