login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053537 Expansion of 1/((1+5*x)*(1-15*x)). 2
1, 10, 175, 2500, 38125, 568750, 8546875, 128125000, 1922265625, 28832031250, 432490234375, 6487304687500, 97309814453125, 1459645996093750, 21894696044921875, 328420410156250000, 4926306304931640625, 73894593811035156250, 1108418910980224609375 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..845

Index entries for linear recurrences with constant coefficients, signature (10,75).

FORMULA

a(n) = (5^n/4)*(3^(n+1) + (-1)^n).

a(n) = 10*a(n-1) + 75*a(n-2), with a(0)=1, a(1)=10.

E.g.f.: (3*exp(15*x) + exp(-5*x))/4. - G. C. Greubel, May 16 2019

MATHEMATICA

LinearRecurrence[{10, 75}, {1, 10}, 30] (* G. C. Greubel, May 16 2019 *)

PROG

(PARI) Vec(1/((1+5*x)*(1-15*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+5*x)*(1-15*x)) )); // G. C. Greubel, May 16 2019

(Sage) (1/((1+5*x)*(1-15*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

(GAP) a:=[1, 10];; for n in [3..30] do a[n]:=10*a[n-1]+75*a[n-2]; od; a; # G. C. Greubel, May 16 2019

CROSSREFS

Cf. A015518.

Sequence in context: A304445 A268936 A144516 * A049380 A302105 A200060

Adjacent sequences:  A053534 A053535 A053536 * A053538 A053539 A053540

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Jan 15 2000

EXTENSIONS

Terms a(11) onward added by G. C. Greubel, May 16 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 00:35 EDT 2021. Contains 348048 sequences. (Running on oeis4.)