login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053537
Expansion of 1/((1+5*x)*(1-15*x)).
2
1, 10, 175, 2500, 38125, 568750, 8546875, 128125000, 1922265625, 28832031250, 432490234375, 6487304687500, 97309814453125, 1459645996093750, 21894696044921875, 328420410156250000, 4926306304931640625, 73894593811035156250, 1108418910980224609375
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (5^n/4)*(3^(n+1) + (-1)^n).
a(n) = 10*a(n-1) + 75*a(n-2), with a(0)=1, a(1)=10.
E.g.f.: (3*exp(15*x) + exp(-5*x))/4. - G. C. Greubel, May 16 2019
MATHEMATICA
LinearRecurrence[{10, 75}, {1, 10}, 30] (* G. C. Greubel, May 16 2019 *)
CoefficientList[Series[1/((1+5x)(1-15x)), {x, 0, 20}], x] (* Harvey P. Dale, Jun 15 2022 *)
PROG
(PARI) Vec(1/((1+5*x)*(1-15*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+5*x)*(1-15*x)) )); // G. C. Greubel, May 16 2019
(Sage) (1/((1+5*x)*(1-15*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
(GAP) a:=[1, 10];; for n in [3..30] do a[n]:=10*a[n-1]+75*a[n-2]; od; a; # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A015518.
Sequence in context: A304445 A268936 A144516 * A049380 A302105 A200060
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, May 16 2019
STATUS
approved