login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053535
Expansion of 1/((1+3*x)*(1-9*x)).
2
1, 6, 63, 540, 4941, 44226, 398763, 3586680, 32286681, 290560446, 2615103063, 23535750420, 211822285221, 1906398972666, 17157595536963, 154418345483760, 1389765152400561, 12507886242464886, 112570976569604463
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (3^n/4)*(3^(n+1) + (-1)^n).
a(n) = 6*a(n-1) + 27*a(n-2), with a(0)=1, a(1)=6.
E.g.f.: (3*exp(9*x) + exp(-3*x))/4. - G. C. Greubel, May 16 2019
MATHEMATICA
LinearRecurrence[{6, 27}, {1, 6}, 20] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(1/((1+3*x)*(1-9*x))) \\ G. C. Greubel, May 16 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1+3*x)*(1-9*x)) )); // G. C. Greubel, May 16 2019
(Sage) (1/((1+3*x)*(1-9*x))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
(GAP) a:=[1, 6];; for n in [3..30] do a[n]:=6*a[n-1]+27*a[n-2]; od; a; # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A015518.
Sequence in context: A123615 A245754 A267248 * A268220 A272495 A039937
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
STATUS
approved