OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: P_5(x) / ((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)^2), with P_5(1) = 9!, where P_5(x) = (1+4*x+50*x^2+262*x^3+930*x^4+2566*x^5+5795*x^6+11156*x^7+ 18699*x^8+27712*x^9+36699*x^10+43696*x^11+46988*x^12+45696*x^13+ 40167*x^14+31828*x^15+22603*x^16+14268*x^17+7899*x^18+3762*x^19+ 1498*x^20+474*x^21+110*x^22+16*x^23+x^24).
MATHEMATICA
CoefficientList[Series[(1 + 4*x + 50*x^2 + 262*x^3 + 930*x^4 + 2566*x^5 + 5795*x^6 + 11156*x^7 + 18699*x^8 + 27712*x^9 + 36699*x^10 + 43696*x^11 + 46988*x^12 + 45696*x^13 + 40167*x^14 + 31828*x^15 + 22603*x^16 + 14268*x^17 + 7899*x^18 + 3762*x^19 + 1498*x^20 + 474*x^21 + 110*x^22 + 16*x^23 + x^24)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)^2*(1 - x^5)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 16 2017 *)
PROG
(PARI) {a(n)=polcoeff(truncate(Ser([1, 4, 50, 262, 930, 2566, 5795, 11156, 18699, 27712, 36699, 43696, 46988, 45696, 40167, 31828, 22603, 14268, 7899, 3762, 1498, 474, 110, 16, 1])) /((1-x)^2*(1-x^2)^2*(1-x^3)^2*(1-x^4)^2*(1-x^5)^2 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved