login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123612
Antidiagonal sums of triangle A123610.
3
1, 1, 2, 3, 5, 8, 17, 31, 68, 145, 325, 728, 1685, 3891, 9140, 21565, 51311, 122666, 295037, 712477, 1728262, 4207027, 10276693, 25178708, 61866141, 152397945, 376309596, 931239093, 2309219447, 5737078442, 14278587533, 35595622719
OFFSET
0,3
COMMENTS
The g.f. was suggested by P. D. Hanna. It can be proved either by letting y=x in the bivariate g.f. for sequence A123610 or by using the formula of A. Howroyd (below) for this sequence and the l.g.f. for sequence A167539. The second proof proceeds as follows: Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (1/n)*Sum_{d|n} phi(n/d)*g(d), where g(d) = A167539(d). Then Sum_{n>=1} a(n)*x^n = Sum_{m>=1} (phi(m)/m)*Sum_{d>=1} g(d)*(x^m)^d/d = Sum_{m>=1} (phi(m)/m)*G(x^m), where G(x) = l.g.f. of sequence g(n) = A167539(n). - Petros Hadjicostas, Oct 25 2017
LINKS
FORMULA
a(n) = (1/n) * Sum_{d | n} phi(n/d) * A167539(d) for n>0. - Andrew Howroyd, Apr 02 2017
G.f.: 1-Sum_{n>=1} (phi(n)/n)*f(x^n), where f(x) = log((1-x-x^2+sqrt((1+x+x^2)*(1-3*x+x^2))/2) = -log((1-x-x^2-sqrt((1+x+x^2)*(1-3*x+x^2))/(2*x^3)). - Petros Hadjicostas, Oct 25 2017
MATHEMATICA
Total /@ Table[Function[m, If[k == 0, 1, 1/m DivisorSum[m, If[GCD[k, #] == #, EulerPhi[#] Binomial[m/#, k/#]^2, 0] &]]][n - k + 1], {n, -1, 30}, {k, 0, Ceiling[n/2]}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
PROG
(PARI) {a(n)=sum(k=0, n\2, if(k==0, 1, (1/(n-k))*sumdiv(n-k, d, if(gcd(k, d)==d, eulerphi(d)*binomial((n-k)/d, k/d)^2, 0))))}
CROSSREFS
Cf. A123610 (triangle), A123611 (row sums); central terms: A123617, A123618, A167539.
Sequence in context: A122630 A108054 A342690 * A077177 A303874 A145793
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved