login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Antidiagonal sums of triangle A123610.
3

%I #20 Oct 25 2017 12:20:19

%S 1,1,2,3,5,8,17,31,68,145,325,728,1685,3891,9140,21565,51311,122666,

%T 295037,712477,1728262,4207027,10276693,25178708,61866141,152397945,

%U 376309596,931239093,2309219447,5737078442,14278587533,35595622719

%N Antidiagonal sums of triangle A123610.

%C The g.f. was suggested by P. D. Hanna. It can be proved either by letting y=x in the bivariate g.f. for sequence A123610 or by using the formula of A. Howroyd (below) for this sequence and the l.g.f. for sequence A167539. The second proof proceeds as follows: Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (1/n)*Sum_{d|n} phi(n/d)*g(d), where g(d) = A167539(d). Then Sum_{n>=1} a(n)*x^n = Sum_{m>=1} (phi(m)/m)*Sum_{d>=1} g(d)*(x^m)^d/d = Sum_{m>=1} (phi(m)/m)*G(x^m), where G(x) = l.g.f. of sequence g(n) = A167539(n). - _Petros Hadjicostas_, Oct 25 2017

%H Andrew Howroyd, <a href="/A123612/b123612.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = (1/n) * Sum_{d | n} phi(n/d) * A167539(d) for n>0. - _Andrew Howroyd_, Apr 02 2017

%F G.f.: 1-Sum_{n>=1} (phi(n)/n)*f(x^n), where f(x) = log((1-x-x^2+sqrt((1+x+x^2)*(1-3*x+x^2))/2) = -log((1-x-x^2-sqrt((1+x+x^2)*(1-3*x+x^2))/(2*x^3)). - _Petros Hadjicostas_, Oct 25 2017

%t Total /@ Table[Function[m, If[k == 0, 1, 1/m DivisorSum[m, If[GCD[k, #] == #, EulerPhi[#] Binomial[m/#, k/#]^2, 0] &]]][n - k + 1], {n, -1, 30}, {k, 0, Ceiling[n/2]}] (* _Michael De Vlieger_, Apr 03 2017, after _Jean-François Alcover_ at A123610 *)

%o (PARI) {a(n)=sum(k=0,n\2,if(k==0,1,(1/(n-k))*sumdiv(n-k,d,if(gcd(k,d)==d, eulerphi(d)*binomial((n-k)/d,k/d)^2,0))))}

%Y Cf. A123610 (triangle), A123611 (row sums); central terms: A123617, A123618, A167539.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 03 2006