login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123613
Column 3 of triangle A123610.
5
1, 4, 20, 68, 175, 392, 786, 1440, 2475, 4036, 6292, 9464, 13805, 19600, 27200, 36996, 49419, 64980, 84238, 107800, 136367, 170696, 211600, 260000, 316881, 383292, 460404, 549460, 651775, 768800, 902066, 1053184, 1223915, 1416108, 1631700, 1872792, 2141581
OFFSET
0,2
LINKS
FORMULA
G.f.: P_3(x) / ((1-x)^2*(1-x^2)^2*(1-x^3)^2), with P_3(1) = 5!, where P_3(x) = (1+2*x+11*x^2+26*x^3+30*x^4+26*x^5+17*x^6+6*x^7+x^8).
MATHEMATICA
CoefficientList[Series[(1 + 2*x + 11*x^2 + 26*x^3 + 30*x^4 + 26*x^5 + 17*x^6 + 6*x^7 + x^8)/((1 - x)^2*(1 - x^2)^2*(1 - x^3)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 16 2017 *)
LinearRecurrence[{4, -6, 6, -9, 12, -9, 6, -6, 4, -1}, {1, 4, 20, 68, 175, 392, 786, 1440, 2475, 4036}, 40] (* Harvey P. Dale, Apr 22 2019 *)
PROG
(PARI) {a(n)=polcoeff(truncate(Ser([1, 2, 11, 26, 30, 26, 17, 6, 1]))/((1-x)^2*(1-x^2)^2*(1-x^3)^2 +x*O(x^n)), n)}
CROSSREFS
Cf. A123610 (triangle); columns: A005997, A123614, A123615, A123616.
Sequence in context: A319779 A287244 A344993 * A006740 A291526 A303011
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved