login
A005997
Number of paraffins.
(Formerly M2832)
10
1, 3, 10, 20, 39, 63, 100, 144, 205, 275, 366, 468, 595, 735, 904, 1088, 1305, 1539, 1810, 2100, 2431, 2783, 3180, 3600, 4069, 4563, 5110, 5684, 6315, 6975, 7696, 8448, 9265, 10115, 11034, 11988, 13015, 14079, 15220, 16400, 17661, 18963, 20350, 21780, 23299
OFFSET
1,2
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
G.f.: (x^3+3*x^2+x+1)*x / ((-1+x)^2*(-1+x^2)^2).
a(n) = A005999(n)+(n-1)^2. - Enrique Pérez Herrero, Mar 27 2012
a(n) = 1 + floor((n-1)/2) + 2*(C(n+1,3)-C(floor((n+1)/2),3)-C(ceiling((n+1)/2),3). - Enrique Pérez Herrero, Apr 22 2012
a(n) = (n+1)(2n^2-(-1)^n+1)/8. - Bruno Berselli, Apr 22 2012
a(n) = A004526(n) + 2*A111384(n). - Enrique Pérez Herrero, Apr 25 2012
E.g.f.: (x*(3 + 4*x + x^2)*cosh(x) + (1 + 2*x + 4*x^2 + x^3)*sinh(x))/4. - Stefano Spezia, Dec 13 2021
MAPLE
a:= n-> (Matrix([[0, 0, -1, -5, -12, -26]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]: seq (a(n), n=1..50); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
A005997[n_]:=1+Floor[(n-1)/2]+2*(Binomial[n+1, 3]-Binomial[Floor[(n+1)/2], 3]-Binomial[Ceiling[(n+1)/2], 3]); Array[A005997, 37] (* Enrique Pérez Herrero, Apr 22 2012 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 3, 10, 20, 39, 63}, 37] (* Bruno Berselli, Apr 22 2012 *)
CROSSREFS
Cf. A005999.
Sequence in context: A272764 A293765 A295953 * A213850 A336529 A081205
KEYWORD
nonn,easy
STATUS
approved