login
A005998
Number of paraffins.
(Formerly M1740)
1
1, 2, 7, 14, 29, 48, 79, 116, 169, 230, 311, 402, 517, 644, 799, 968, 1169, 1386, 1639, 1910, 2221, 2552, 2927, 3324, 3769, 4238, 4759, 5306, 5909, 6540, 7231, 7952, 8737, 9554, 10439, 11358, 12349, 13376, 14479, 15620, 16841, 18102, 19447, 20834, 22309
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
G.f.: x*(x^4+2*x^3+2*x^2+1)/(-1+x)^2/(-1+x^2)^2.
MAPLE
a:= n-> (Matrix([[0, -1, -4, -11, -22, -41]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]:
seq(a(n), n=1..38); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
a[n_] := 1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1); Array[a, 40] (* Jean-François Alcover, Mar 13 2014 *)
CoefficientList[Series[(x^4 + 2 x^3 + 2 x^2 + 1)/(-1 + x)^2/(-1 + x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 2, 7, 14, 29, 48}, 50] (* Harvey P. Dale, Oct 13 2024 *)
PROG
(Magma) [1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1): n in [1..50]]; // Vincenzo Librandi, Mar 15 2014
CROSSREFS
Sequence in context: A184704 A295963 A221317 * A122751 A152944 A353215
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Mar 15 2014
STATUS
approved