login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005998 Number of paraffins.
(Formerly M1740)
1
1, 2, 7, 14, 29, 48, 79, 116, 169, 230, 311, 402, 517, 644, 799, 968, 1169, 1386, 1639, 1910, 2221, 2552, 2927, 3324, 3769, 4238, 4759, 5306, 5909, 6540, 7231, 7952, 8737, 9554, 10439, 11358, 12349, 13376, 14479, 15620, 16841, 18102, 19447, 20834, 22309 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.

S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)

FORMULA

G.f.: x*(x^4+2*x^3+2*x^2+1)/(-1+x)^2/(-1+x^2)^2.

MAPLE

a:= n-> (Matrix([[0, -1, -4, -11, -22, -41]]). Matrix(6, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1, 1]:

seq(a(n), n=1..38); # Alois P. Heinz, Jul 31 2008

MATHEMATICA

a[n_] := 1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1); Array[a, 40] (* Jean-Fran├žois Alcover, Mar 13 2014 *)

CoefficientList[Series[(x^4 + 2 x^3 + 2 x^2 + 1)/(-1 + x)^2/(-1 + x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)

PROG

(MAGMA) [1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1): n in [1..50]]; // Vincenzo Librandi, Mar 15 2014

CROSSREFS

Sequence in context: A184704 A295963 A221317 * A122751 A152944 A018437

Adjacent sequences:  A005995 A005996 A005997 * A005999 A006000 A006001

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vincenzo Librandi, Mar 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 12:48 EST 2018. Contains 299333 sequences. (Running on oeis4.)