OFFSET
1,1
COMMENTS
a(n) is also the number of triples (w,x,y) having all terms in {0,...,n} and w<R<=x, where R=max(w,x,y)-min(w,x,y). [Clark Kimberling, Jun 10 2012]
a(n) is also the sum of all elements of the square matrix M(n-1) = M1(n-1) x M2(n-1), where M1(n) is the square matrix with elements m1(i,j)= (1+(-1)^(i+j+1))/2, A057212; and M2(n) is the square matrix given by m2(i,j)= (1+(-1)^(i+j))/2, A057212. - Enrique Pérez Herrero, Jun 15 2013
Also the number of longest paths in the (n+1)-web graph for n > 2. - Eric W. Weisstein, Mar 27 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..1000
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Longest Path Problem
Eric Weisstein's World of Mathematics, Web Graph
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(1)=2, a(2)=6, a(3)=16, a(4)=30, a(5)=54, a(6)=84. - Harvey P. Dale, Apr 08 2013
From Ayoub Saber Rguez, Nov 20 2021: (Start)
a(n) = (n^3 + 3*n^2 + 2*n + 1 + n*(n mod 2) - ((n+1) mod 2))/4. (End)
MATHEMATICA
Table[(1/4)*(1 + n)*(-2 + 5*n + n^2 + 2*Ceiling[1/2 - n/2] - 4*Floor[n/2]), {n, 1, 200}] (* Enrique Pérez Herrero, Aug 03 2012 *)
CoefficientList[Series[2 (1 - x^3)/((1 - x)^5 (1 + x)^2), {x, 0, 40}], x] (* Harvey P. Dale, Apr 08 2013 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {2, 6, 16, 30, 54, 84}, 40] (* Harvey P. Dale, Apr 08 2013 *)
Table[(n + 1) (2 n (n + 2) + 1 - (-1)^n)/8, {n, 20}] (* Eric W. Weisstein, Mar 27 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 03 2012
STATUS
approved