login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160620
a(n) = Sum_{d|n} phi(n/d)^2*2^d.
2
0, 2, 6, 16, 28, 64, 96, 200, 320, 616, 1152, 2248, 4304, 8480, 16728, 33152, 66048, 131584, 263160, 524936, 1050176, 2098240, 4196952, 8389576, 16782976, 33555744, 67117920, 134220712, 268453360, 536872480, 1073780352, 2147485448, 4295034880, 8589944384
OFFSET
0,2
LINKS
FORMULA
Dirichlet (convolution) product of A127473 and A000079. - R. J. Mathar, Jun 24 2021
MAPLE
A160620 := proc(n)
if n =0 then
0;
else
add((numtheory[phi](n/d))^2*2^d, d=numtheory[divisors](n)) ;
end if ;
end proc: # R. J. Mathar, Jun 24 2021
MATHEMATICA
a[n_]:= If[n<1, 0, Sum[EulerPhi[n/d]^2 * 2^d, {d, Divisors[n]}]]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, May 06 2018 *)
PROG
(PARI) a(n) = if (n, sumdiv(n, d, eulerphi(n/d)^2*2^d), 0); \\ Michel Marcus, May 07 2018, Jun 22 2021
CROSSREFS
Cf. A053635.
Sequence in context: A379152 A230853 A364666 * A005996 A192735 A330503
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 21 2009
STATUS
approved