login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330503
Number of Sós permutations of {0,1,...,n}.
1
2, 6, 16, 30, 60, 84, 144, 198, 280, 352, 504, 598, 812, 960, 1152, 1360, 1728, 1938, 2400, 2688, 3080, 3450, 4128, 4500, 5200, 5724, 6440, 7018, 8100, 8618, 9856, 10692, 11696, 12600, 13824, 14652, 16416, 17550, 18960, 20090, 22260, 23306, 25696, 27180, 28888
OFFSET
1,1
LINKS
S. Bockting-Conrad, Y. Kashina, T. K. Petersen, and B. E. Tenner, Sós permutations, arXiv:2007.01132 [math.CO], 2020.
FORMULA
a(n) = (n+1) * Sum_{k=1..n} phi(k), where phi(k) is Euler's totient function.
a(n) = (n+1) * A002088(n).
EXAMPLE
For n = 3, the a(3) = 16 Farey functions of {0,1,2,3} are {0123, 3012, 2301, 1230, 0312, 2031, 1203, 3120, 0213, 3021, 1302, 2130, 0321, 1032, 2103, 3210}.
MATHEMATICA
MapIndexed[(First[#2] + 1) #1 &, Accumulate@ Array[EulerPhi, 45]] (* Michael De Vlieger, Dec 16 2019 *)
PROG
(PARI) a(n)={(n+1)*sum(k=1, n, eulerphi(k))} \\ Andrew Howroyd, Dec 20 2019
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A330503(n):
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*A330503(k1)//(k1+1)-1)
j, k1 = j2, n//j2
return (n+1)*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 29 2021
CROSSREFS
Cf. A002088.
Sequence in context: A160620 A005996 A192735 * A171218 A032091 A182994
KEYWORD
easy,nonn
AUTHOR
Bridget Tenner, Dec 16 2019
EXTENSIONS
More terms from Michael De Vlieger, Dec 16 2019
STATUS
approved