login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005999
Number of paraffins.
(Formerly M1577)
2
1, 2, 6, 11, 23, 38, 64, 95, 141, 194, 266, 347, 451, 566, 708, 863, 1049, 1250, 1486, 1739, 2031, 2342, 2696, 3071, 3493, 3938, 4434, 4955, 5531, 6134, 6796, 7487, 8241, 9026, 9878, 10763, 11719, 12710, 13776, 14879, 16061, 17282, 18586, 19931, 21363, 22838, 24404, 26015, 27721, 29474, 31326, 33227, 35231, 37286
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
G.f.: (x^5+2*x^4+x^3+x^2+1)/((-1+x)^2*(-1+x^2)^2).
a(n) = A005997(n) - (n-1)^2. - Enrique Pérez Herrero, Mar 28 2012
MAPLE
A005999:=n->1+floor((n-1)/2)+2*(binomial(n+1, 3)-binomial(floor((n+1)/2), 3)-binomial(ceil((n+1)/2), 3))-(n-1)^2: seq(A005999(n), n=1..40); # Wesley Ivan Hurt, Sep 16 2014
MATHEMATICA
A005997[n_] := 1 + Floor[(n-1)/2] + 2*(Binomial[n+1, 3] -Binomial[Floor[(n+1)/2], 3] - Binomial[Ceiling[(n+1)/2], 3]); A005999[n_] := A005997[n] - (n-1)^2; Array[A005999, 100] (* Enrique Pérez Herrero, Apr 22 2012 *)
PROG
(Magma) [1+Floor((n-1)/2)+2*(Binomial(n+1, 3)-Binomial(Floor((n+1)/2), 3)-Binomial(Ceiling((n+1)/2), 3))-(n-1)^2 : n in [1..50]]; // Wesley Ivan Hurt, Sep 16 2014
(PARI) Vec( (x^5+2*x^4+x^3+x^2+1)/(-1+x)^2/(-1+x^2)^2 + O(x^66) ) \\ Joerg Arndt, Sep 16 2014
CROSSREFS
Cf. A005997.
Sequence in context: A083322 A073939 A085264 * A102429 A080012 A103143
KEYWORD
nonn,easy
STATUS
approved