OFFSET
0,5
COMMENTS
a(n) is the maximum number of open triangles in a simple, undirected graph with n vertices. - Eugene Lykhovyd, Oct 20 2018
a(n) is the maximum number of elements of the set T := {3} u (IN \ 3IN) that can be written as a sum of three distinct elements of an n-element subset of T, see arXiv link 2309.14840. - Markus Sigg, Sep 27 2023
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Peter Keevash and Benny Sudakov, The Turan number of the Fano plane, Combinatorica, 25 (2005), 561-574; alternative link.
Artem Pyatkin, Eugene Lykhovyd, and Sergiy Butenko, The maximum number of induced open triangles in graphs of a given order, Optimization Letters (2018).
Adityanarayanan Radhakrishnan, Liam Solus, and Caroline Uhler, Counting Markov Equivalence Classes by Number of Immoralities, arXiv preprint arXiv:1611.07493 [math.CO], 2016-2017.
Markus Sigg, A note on OEIS sequence A111384, arXiv:2309.14840 [math.CO], 2023.
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = floor(n/2)*ceiling(n/2)*(n-2)/2. - James R. Buddenhagen, Nov 11 2009
From R. J. Mathar, Mar 18 2010: (Start)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x^3*(1+2*x)/ ((1+x)^2 * (x-1)^4). (End)
a(n) = (n-2)*n^2/8 for even n, a(n) = (n-2)*(n^2-1)/8 for odd n. - Markus Sigg, Sep 26 2023
Sum_{n>=3} 1/a(n) = 4/3 - Pi^2/6 + 8*log(2)/3. - Amiram Eldar, Oct 10 2023
E.g.f.: (x + 2)*(x*(x - 1)*cosh(x) + (x^2 - x + 1)*sinh(x))/8. - Stefano Spezia, Apr 08 2024
MAPLE
seq(floor(n/2)*ceil(n/2)*(n-2)/2, n=0..50); # James R. Buddenhagen, Nov 11 2009
MATHEMATICA
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 0, 1, 4, 9}, 50] (* Vincenzo Librandi, Oct 20 2018 *)
PROG
(PARI) a(n)=floor(n/2)*ceil(n/2)*(n-2)/2 \\ Charles R Greathouse IV, Oct 16 2015
(Magma) [Binomial(n, 3) - Binomial(Floor(n/2), 3) - Binomial(Ceiling(n/2), 3): n in [0..50]]; // Vincenzo Librandi, Oct 20 2018
(GAP) a:=[0, 0, 0, 1, 4, 9];; for n in [7..50] do a[n]:=2*a[n-1]+a[n-2]-4*a[n-3]+a[n-4]+2*a[n-5]-a[n-6]; od; a; # Muniru A Asiru, Oct 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 10 2005
STATUS
approved