Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:45:00
%S 1,6,63,540,4941,44226,398763,3586680,32286681,290560446,2615103063,
%T 23535750420,211822285221,1906398972666,17157595536963,
%U 154418345483760,1389765152400561,12507886242464886,112570976569604463
%N Expansion of 1/((1+3*x)*(1-9*x)).
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H G. C. Greubel, <a href="/A053535/b053535.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,27).
%F a(n) = (3^n/4)*(3^(n+1) + (-1)^n).
%F a(n) = 6*a(n-1) + 27*a(n-2), with a(0)=1, a(1)=6.
%F E.g.f.: (3*exp(9*x) + exp(-3*x))/4. - _G. C. Greubel_, May 16 2019
%t LinearRecurrence[{6,27}, {1,6}, 20] (* _G. C. Greubel_, May 16 2019 *)
%o (PARI) my(x='x+O('x^20)); Vec(1/((1+3*x)*(1-9*x))) \\ _G. C. Greubel_, May 16 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1+3*x)*(1-9*x)) )); // _G. C. Greubel_, May 16 2019
%o (Sage) (1/((1+3*x)*(1-9*x))).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, May 16 2019
%o (GAP) a:=[1,6];; for n in [3..30] do a[n]:=6*a[n-1]+27*a[n-2]; od; a; # _G. C. Greubel_, May 16 2019
%Y Cf. A015518.
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Jan 15 2000