login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053536
Expansion of 1/((1+4*x)*(1-12*x)).
2
1, 8, 112, 1280, 15616, 186368, 2240512, 26869760, 322502656, 3869769728, 46438285312, 557255229440, 6687079530496, 80244887257088, 962938915520512, 11555265912504320, 138663195245019136, 1663958325760360448, 19967499977843802112, 239609999459247718400
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (4^n/4)*(3^(n+1) + (-1)^n).
a(n) = 8*a(n-1) + 48*a(n-2), with a(0)=1, a(1)=8.
E.g.f.: (3*exp(12*x) + exp(-4*x))/4. - G. C. Greubel, May 16 2019
a(n) = 2^n*A053524(n+1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
LinearRecurrence[{8, 48}, {1, 8}, 30] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) Vec(1/((1+4*x)*(1-12*x)) + O(x^30)) \\ Michel Marcus, Dec 03 2014
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/((1+4*x)*(1-12*x)) )); // G. C. Greubel, May 16 2019
(Sage) (1/((1+4*x)*(1-12*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=8*a[n-1]+48*a[n-2]; od; a; # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A015518.
Sequence in context: A317568 A075851 A270111 * A139741 A067900 A067414
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, May 16 2019
STATUS
approved