login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053539
a(n) = n * 8^(n-1).
7
0, 1, 16, 192, 2048, 20480, 196608, 1835008, 16777216, 150994944, 1342177280, 11811160064, 103079215104, 893353197568, 7696581394432, 65970697666560, 562949953421312, 4785074604081152, 40532396646334464, 342273571680157696, 2882303761517117440, 24211351596743786496
OFFSET
0,3
COMMENTS
The Szeged index of the hypercube Q_n (see the Ashrafi et al. reference, p. 45, last line). - Emeric Deutsch, Aug 06 2014
For n > 3, 2*a(n) is the number of spanning trees in a superprism on 2*n vertices (see Bogdanowicz). - Stefano Spezia, May 05 2024
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
A. R. Ashrafi, B. Manoochehrian, and H. Yousefi-Azari, On Szeged polynomial of a graph, Bull. Iranian Math. Soc., 33, 2007, 37-46. - Emeric Deutsch, Aug 06 2014
Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See Theorem 3.1.
FORMULA
a(n) = 16*a(n-1) - 64*a(n-2), with a(0)=0, a(1)=1. - Emeric Deutsch, Aug 06 2014
From G. C. Greubel, May 16 2019: (Start)
G.f.: x/(1-8*x)^2.
E.g.f.: x*exp(8*x). (End)
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 8*log(8/7).
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(9/8). (End)
MAPLE
a := proc(n) option remember; if n<2 then n else 16*a(n-1)-64*a(n-2) end if end proc: seq(a(n), n = 0 .. 20); # Emeric Deutsch, Aug 06 2014
MATHEMATICA
Table[n 8^(n-1), {n, 0, 20}] (* or *) LinearRecurrence[{16, -64}, {0, 1}, 20] (* Harvey P. Dale, Feb 01 2017 *)
PROG
(Magma) [n*8^(n-1): n in [0..20]]; // Vincenzo Librandi, Feb 09 2011
(PARI) a(n) = n*8^(n-1); \\ Joerg Arndt, Aug 07 2014
(Sage) [n*8^(n-1) for n in (0..20)] # G. C. Greubel, May 16 2019
(GAP) List([0..20], n-> n*8^(n-1)) # G. C. Greubel, May 16 2019
CROSSREFS
Binomial transform of A027473.
Sequence in context: A071081 A317601 A000767 * A338100 A218176 A120994
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 15 2000
EXTENSIONS
Offset corrected and name edited by Emeric Deutsch, Aug 06 2014
STATUS
approved