login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338100
Number of spanning trees in the n X 2 king graph.
2
1, 16, 192, 2304, 27648, 331776, 3981312, 47775744, 573308928, 6879707136, 82556485632, 990677827584, 11888133931008, 142657607172096, 1711891286065152, 20542695432781824, 246512345193381888, 2958148142320582656, 35497777707846991872, 425973332494163902464, 5111679989929966829568
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
a(n) = 12 * a(n-1) for n > 2.
a(n) = 3^(n-2) * 4^n for n > 1.
G.f.: x*(1 + 4*x)/(1 - 12*x). - Stefano Spezia, Nov 29 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A338100(n):
return A338029(n, 2)
print([A338100(n) for n in range(1, 20)])
CROSSREFS
Column 2 of A338029.
Sequence in context: A317601 A000767 A053539 * A218176 A120994 A374070
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 29 2020
STATUS
approved