Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Nov 29 2020 08:19:26
%S 1,16,192,2304,27648,331776,3981312,47775744,573308928,6879707136,
%T 82556485632,990677827584,11888133931008,142657607172096,
%U 1711891286065152,20542695432781824,246512345193381888,2958148142320582656,35497777707846991872,425973332494163902464,5111679989929966829568
%N Number of spanning trees in the n X 2 king graph.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (12).
%F a(n) = 12 * a(n-1) for n > 2.
%F a(n) = 3^(n-2) * 4^n for n > 1.
%F G.f.: x*(1 + 4*x)/(1 - 12*x). - _Stefano Spezia_, Nov 29 2020
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o def make_nXk_king_graph(n, k):
%o grids = []
%o for i in range(1, k + 1):
%o for j in range(1, n):
%o grids.append((i + (j - 1) * k, i + j * k))
%o if i < k:
%o grids.append((i + (j - 1) * k, i + j * k + 1))
%o if i > 1:
%o grids.append((i + (j - 1) * k, i + j * k - 1))
%o for i in range(1, k * n, k):
%o for j in range(1, k):
%o grids.append((i + j - 1, i + j))
%o return grids
%o def A338029(n, k):
%o if n == 1 or k == 1: return 1
%o universe = make_nXk_king_graph(n, k)
%o GraphSet.set_universe(universe)
%o spanning_trees = GraphSet.trees(is_spanning=True)
%o return spanning_trees.len()
%o def A338100(n):
%o return A338029(n, 2)
%o print([A338100(n) for n in range(1, 20)])
%Y Column 2 of A338029.
%K nonn,easy
%O 1,2
%A _Seiichi Manyama_, Nov 29 2020