login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line). 6
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Riordan array (1/(1-x-x^2), x(1-x)/(1-x-x^2)). Row sums are A000079. Diagonal sums are A006053(n+2). - Paul Barry, Nov 01 2006

Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 05 2012

Mirror image of triangle in A208342. - Philippe Deléham, Mar 05 2012

A053538 is jointly generated with A076791 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1, for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section at A076791. - Clark Kimberling, Mar 08 2012

The matrix inverse starts

1;

-1, 1;

-1, -1, 1;

1, -2, -1, 1;

3, 1, -3, -1, 1;

1, 6, 1, -4, -1, 1;

-7, 4, 10, 1, -5, -1, 1;

-13, -13, 8, 15, 1, -6, -1, 1;

3, -31, -23, 13, 21, 1, -7, -1, 1; - R. J. Mathar, Mar 15 2013

REFERENCES

R. P. Grimaldi, Extraordinary subsets: a generalization, Fib. Quart., 55 (No. 3, 2017), 114-122. See Table 1.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

From Philippe Deléham, Mar 05 2012: (Start)

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.

G.f.: 1/(1-(1+y)*x-(1-y)*x^2).

Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. (End)

EXAMPLE

n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}

Triangle begins :

1;

1, 1;

2, 1, 1;

3, 3, 1, 1;

5, 5, 4, 1, 1;

8, 10, 7, 5, 1, 1;

13, 18, 16, 9, 6, 1, 1;

...

(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :

1;

0, 1;

0, 1, 1;

0, 2, 1, 1;

0, 3, 3, 1, 1;

0, 5, 5, 4, 1, 1;

0, 8, 10, 7, 5, 1, 1;

0, 13, 18, 16, 9, 6, 1, 1;

MAPLE

a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):

seq(seq(a(n, m), m=0..n), n=0..12); # Alois P. Heinz, Sep 19 2013

MATHEMATICA

Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k, 0, n}], {n, 0, 12}, {m, 0, n}]

PROG

(PARI) {T(n, k) = sum(j=0, n, binomial(j, k)*binomial(n-j, j-k))}; \\ G. C. Greubel, May 16 2019

(Magma) [[(&+[Binomial(j, k)*Binomial(n-j, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019

(Sage) [[sum(binomial(j, k)*binomial(n-j, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019

(GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> Binomial(j, k)*Binomial(n-j, j-k)) ))); # G. C. Greubel, May 16 2019

CROSSREFS

Cf. A000045, A000079, A208342.

Sequence in context: A337009 A174802 A238346 * A235803 A138201 A220614

Adjacent sequences: A053535 A053536 A053537 * A053539 A053540 A053541

KEYWORD

nonn,tabl

AUTHOR

Wouter Meeussen, May 23 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 03:51 EST 2022. Contains 358362 sequences. (Running on oeis4.)