OFFSET
1,5
COMMENTS
Row sums are {1, 2, 4, 8, 16, 32, 64, 127, 252, ...}.
FORMULA
p(x,m) = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}]);
t(n,m) = antidiagonal(expansion(p,x,n))).
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 5, 5, 4, 1},
{1, 8, 9, 8, 5, 1},
{1, 13, 17, 14, 12, 6, 1},
{1, 21, 31, 27, 22, 17, 7, 1},
{1, 34, 57, 53, 41, 34, 23, 8, 1}
MATHEMATICA
p[x_, m_] = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}])
a = Table[Table[SeriesCoefficient[Series[FullSimplify[ExpandAll[ p[x, m]]], {x, 0, 50}], n], {n, 0, 10}], {m, 1, 10}]
Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 2, 10}]
Flatten[%]
Table[Sum[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 2, 10}]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Mar 29 2010
STATUS
approved