login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular sequence from antidiagonal expansion of: p(x,m) = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}]).
0

%I #4 Dec 10 2016 17:31:19

%S 1,1,1,1,2,1,1,3,3,1,1,5,5,4,1,1,8,9,8,5,1,1,13,17,14,12,6,1,1,21,31,

%T 27,22,17,7,1,1,34,57,53,41,34,23,8,1

%N Triangular sequence from antidiagonal expansion of: p(x,m) = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}]).

%C Row sums are {1, 2, 4, 8, 16, 32, 64, 127, 252, ...}.

%F p(x,m) = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}]);

%F t(n,m) = antidiagonal(expansion(p,x,n))).

%e {1},

%e {1, 1},

%e {1, 2, 1},

%e {1, 3, 3, 1},

%e {1, 5, 5, 4, 1},

%e {1, 8, 9, 8, 5, 1},

%e {1, 13, 17, 14, 12, 6, 1},

%e {1, 21, 31, 27, 22, 17, 7, 1},

%e {1, 34, 57, 53, 41, 34, 23, 8, 1}

%t p[x_, m_] = x*(x + 1)^(m - 1)/(1 - Sum[x^i, {i, 1, m}])

%t a = Table[Table[SeriesCoefficient[Series[FullSimplify[ExpandAll[ p[x, m]]], {x, 0, 50}], n], {n, 0, 10}], {m, 1, 10}]

%t Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 2, 10}]

%t Flatten[%]

%t Table[Sum[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 2, 10}]

%K nonn,tabl,uned

%O 1,5

%A _Roger L. Bagula_, Mar 29 2010