login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174804
a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).
2
0, 1, 4, 6, 16, 30, 36, 42, 48, 81, 120, 132, 144, 156, 168, 180, 256, 340, 360, 380, 400, 420, 440, 460, 480, 625, 780, 810, 840, 870, 900, 930, 960, 990, 1020, 1050, 1296, 1554, 1596, 1638, 1680, 1722, 1764, 1806, 1848, 1890, 1932, 1974, 2016, 2401, 2800
OFFSET
0,3
COMMENTS
As a(n^2) = n^4, A000583 is a subsequence. - Bernard Schott, Feb 01 2023
FORMULA
a(n) = n*A000196(n)*A003059(n). - Michel Marcus, Feb 14 2018
MATHEMATICA
f[n_]:=n*Floor[Sqrt[n]]*Ceiling[Sqrt[n]]; Table[f[n], {n, 0, 5!}]
PROG
(PARI) a(n) = n*sqrtint(n)*ceil(sqrt(n)); \\ Michel Marcus, Feb 14 2018
(Python)
from math import isqrt
def A174804(n): return n*(n if (k:=(m:=isqrt(n))**2)==n else k+m) # Chai Wah Wu, Jul 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved