login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).
2

%I #17 Feb 02 2023 04:52:07

%S 0,1,4,6,16,30,36,42,48,81,120,132,144,156,168,180,256,340,360,380,

%T 400,420,440,460,480,625,780,810,840,870,900,930,960,990,1020,1050,

%U 1296,1554,1596,1638,1680,1722,1764,1806,1848,1890,1932,1974,2016,2401,2800

%N a(n) = n*ceiling(sqrt(n))*floor(sqrt(n)).

%C As a(n^2) = n^4, A000583 is a subsequence. - _Bernard Schott_, Feb 01 2023

%F a(n) = n*A000196(n)*A003059(n). - _Michel Marcus_, Feb 14 2018

%t f[n_]:=n*Floor[Sqrt[n]]*Ceiling[Sqrt[n]];Table[f[n],{n,0,5!}]

%o (PARI) a(n) = n*sqrtint(n)*ceil(sqrt(n)); \\ _Michel Marcus_, Feb 14 2018

%o (Python)

%o from math import isqrt

%o def A174804(n): return n*(n if (k:=(m:=isqrt(n))**2)==n else k+m) # _Chai Wah Wu_, Jul 29 2022

%Y Cf. A000196, A000583, A003059, A038760, A174803.

%K nonn

%O 0,3

%A _Vladimir Joseph Stephan Orlovsky_, Mar 29 2010