login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053532
Expansion of e.g.f.: (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6).
3
1, 0, 0, 0, 3, 12, 60, 360, 2835, 24696, 237384, 2503440, 28941165, 363593340, 4930388892, 71759200968, 1115892704745, 18465120087120, 323965034820720, 6007037150742624, 117377605956803571, 2410702829834021820, 51917379915449131020
OFFSET
0,5
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(a), k=4.
LINKS
FORMULA
a(n) ~ sqrt(2) * n^n / exp(n+11/12). - Vaclav Kotesovec, Aug 04 2014
Conjecture: D-finite with recurrence 2*a(n) +2*(-n+1)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 06 2020
MATHEMATICA
With[{m = 30}, CoefficientList[Series[(1-x)^(-1/2)*Exp[-x/2 -x^2/4 -x^3/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6) )) \\ G. C. Greubel, May 15 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^(-1/2)*Exp(-x/2 -x^2/4 -x^3/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
(Sage) m = 30; T = taylor((1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
CROSSREFS
Sequence in context: A001710 A105752 A177138 * A357594 A159867 A082278
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved