The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053531 Expansion of e.g.f.: (1-x)^(-x/2)*exp(-x^2*(4 +2*x +x^2)/8). 2
1, 0, 0, 0, 1, 15, 72, 420, 2915, 24570, 245070, 2633400, 30588783, 383841315, 5197243590, 75666140550, 1177491151785, 19496256883740, 342184849138188, 6346249258076280, 124023565540658025, 2547445128977720475, 54865546632888272820 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
The number of simple labeled graphs on n nodes whose connected components are wheels. - Geoffrey Critzer, Dec 10 2011
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(c).
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2013.
FORMULA
a(n) = n!*Sum_{m=1..n} (-2)^(-m)/m!* Sum_{k=0..m} (binomial(m,k)* Sum_{i=k..n-2*m+k} (2^(k-i)* Sum_{j=0..k} binomial(k,j)*binomial(j, i-3*k+2*j) * (-1)^(n-m-i-2*(m-k))*(m-k)!/(n-m-i)!*stirling1(n-m-i,m-k) ) ), n>0. - Vladimir Kruchinin, Sep 10 2010
MATHEMATICA
nn = 30; a = Sum[(n (n - 2)!/2) x^n/n!, {n, 5, nn}]; Range[0, nn]! CoefficientList[Series[Exp[x^4/4! + a], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 10 2011 *)
PROG
(Maxima) a(n):=n!*sum((-2)^(-m)/m!*sum(binomial(m, k)*sum(2^(k-i)* sum(binomial(k, j)*binomial(j, i-3*k+2*j), j, 0, k)*(-1)^(n-m-i-2*(m-k))*(m-k)!/(n-m-i)!*stirling1(n-m-i, m-k), i, k, n-2*m+k), k, 0, m), m, 1, n); /* Vladimir Kruchinin, Sep 10 2010 */
(PARI) my(x='x+O('x^30)); Vec(serlaplace( (1-x)^(-x/2)*exp(-x^2*(4 +2*x +x^2)/8) )) \\ G. C. Greubel, May 15 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^(-x/2)*Exp(-x^2*(4 +2*x +x^2)/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
(Sage) m = 30; T = taylor((1-x)^(-x/2)*exp(-x^2*(4 +2*x +x^2)/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
CROSSREFS
Sequence in context: A241234 A212097 A212098 * A000476 A002603 A212562
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)