The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212562 Number of (w,x,y,z) with all terms in {1,...,n} and w+x<2y+2z. 2
0, 1, 15, 73, 228, 551, 1137, 2097, 3568, 5701, 8675, 12681, 17940, 24683, 33173, 43681, 56512, 71977, 90423, 112201, 137700, 167311, 201465, 240593, 285168, 335661, 392587, 456457, 527828, 607251, 695325, 792641, 899840, 1017553, 1146463, 1287241, 1440612 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
LINKS
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7).
From Colin Barker, Dec 05 2015: (Start)
a(n) = 1/96*(82*n^4 + 12*n^3 + 8*n^2 + 6*((-1)^n-1)*n - 3*(-1)^n + 3).
G.f.: x*(1 + 12*x + 29*x^2 + 29*x^3 + 10*x^4 + x^5) / ((1-x)^5*(1+x)^2). (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x < 2 y + 2 z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212562 *)
CoefficientList[Series[x (1 + 12 x + 29 x^2 + 29 x^3 + 10 x^4 + x^5)/((1 - x)^5 (1 + x)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Dec 05 2015 *)
PROG
(PARI) concat(0, Vec(x*(1+12*x+29*x^2+29*x^3+10*x^4+x^5)/((1-x)^5*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 05 2015
(Magma) I:=[0, 1, 15, 73, 228, 551, 1137]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)-5*Self(n-3)+5*Self(n-4)+Self(n-5)-3*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 05 2015
CROSSREFS
Cf. A211795.
Sequence in context: A053531 A000476 A002603 * A212092 A022817 A171341
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 21 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 10:20 EDT 2024. Contains 372745 sequences. (Running on oeis4.)