login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200060
Number of -n..n arrays x(0..5) of 6 elements with zero sum and elements alternately strictly increasing and strictly decreasing.
1
10, 178, 1098, 4172, 11962, 28554, 59910, 114232, 202314, 337902, 538054, 823496, 1218978, 1753638, 2461350, 3381092, 4557298, 6040218, 7886274, 10158420, 12926498, 16267598, 20266414, 25015604, 30616142, 37177686, 44818926, 53667948
OFFSET
1,1
COMMENTS
Row 6 of A200057.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-5) -a(n-6) -a(n-7) +2*a(n-8) -a(n-10) -2*a(n-11) +3*a(n-12) -a(n-13).
Empirical g.f.: 2*x*(5 + 74*x + 292*x^2 + 622*x^3 + 910*x^4 + 1045*x^5 + 999*x^6 + 782*x^7 + 452*x^8 + 162*x^9 + 24*x^10 + x^11) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 17 2018
EXAMPLE
Some solutions for n=6:
..3...-3...-2....4....4...-2...-5....0....1....1....2....1....1...-2...-3...-1
..5...-2...-3....3....5...-6....3....2...-6...-2....5...-6...-2....3....2....6
.-5...-4....3....5...-4....6....2...-3....0....5...-1....1....6...-2....1...-3
.-3....3...-5...-6...-2....0....5....4...-4...-6....2...-2...-6....2....3....0
.-6....1....5...-2...-5....6...-3...-6....6....6...-5....6....1...-3...-6...-2
..6....5....2...-4....2...-4...-2....3....3...-4...-3....0....0....2....3....0
CROSSREFS
Cf. A200057.
Sequence in context: A053537 A049380 A302105 * A240561 A057122 A261177
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2011
STATUS
approved