login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200062
Meanders of length n and central angle < 360 degrees.
3
0, 1, 1, 4, 1, 15, 1, 41, 23, 133, 1, 650, 1, 1725, 961, 6930, 1, 30323, 1, 99716, 40431, 352729, 1, 1709125, 35467, 5200315, 2008233, 20960538, 1, 93058849, 1, 312220259, 105533203, 1166803129, 20194059, 5478229800, 1, 17672631921, 5731781295, 71539226243, 1
OFFSET
1,4
COMMENTS
A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.
a(n) = 1 if and only if n is prime.
LINKS
Peter Luschny, Meander.
FORMULA
a(n) = Sum_{d|n} A198060(d-1,n/d-1) - 2^(n-1).
EXAMPLE
See the link for n = 6,8,9.
MAPLE
A200062 := proc(n) local i;
add(A198060(i-1, n/i-1), i=numtheory[divisors](n)) - 2^(n-1) end: seq(A200062(i), i=1..41);
MATHEMATICA
A198060[m_, n_] := Sum[ Sum[ Sum[ (-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1) * (n+1)^j * (k+1)^(m-j) / (k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}] - 2^(n-1); Table[a[n], {n, 1, 41}] (* Jean-François Alcover, Jun 27 2013 *)
PROG
(PARI)
A200062(n) = { D = divisors(n);
sum(m = 2, #D, d = D[m];
sum(k=0, n/d-1, binomial(n/d-1, k)^d*
sum(j=0, d-1, ((n/d)/(k+1))^j*
sum(i=0, d-1, (-1)^(j+i)*binomial(i, j)
))))}
CROSSREFS
Sequence in context: A349124 A328235 A293129 * A338832 A229468 A319039
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 16 2011
STATUS
approved