login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199932
Number of meanders of length n.
4
1, 3, 5, 12, 17, 47, 65, 169, 279, 645, 1025, 2698, 4097, 9917, 17345, 39698, 65537, 161395, 262145, 624004, 1089007, 2449881, 4194305, 10097733, 16812683, 38754747, 69117097, 155178266, 268435457, 629929761, 1073741825, 2459703907, 4400500499, 9756737721
OFFSET
1,2
COMMENTS
A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.
a(n) = 2^(n-1) + 1 iff n is prime.
LINKS
FORMULA
a(n) = Sum_{d|n} A198060(d-1,n/d-1).
MAPLE
A199932 := proc(n) local d, k, j, i; add(add(add(add(
(-1)^(j+i)*binomial(i, j)*binomial(n/d-1, k)^d*((n/d)/(k+1))^j,
i=0..d-1), j=0..d-1), k=0..(n/d-1)), d=numtheory[divisors](n)) end:
seq(A199932(i), i=1..34);
MATHEMATICA
A198060[m_, n_] := Sum[ Sum[ Sum[(-1)^(j+i)*Binomial[i, j]* Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 27 2013 *)
CROSSREFS
Sequence in context: A361274 A126471 A317100 * A305552 A226652 A024696
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 20 2011
STATUS
approved