login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199929
Trisection 2 of A199802.
1
2, -4, -5, 27, -8, -128, 200, 405, -1525, -172, 8002, -9072, -29585, 83119, 47732, -483840, 357884, 2025929, -4346921, -4941000, 28343650, -10011500, -132300829, 215642979, 407506016, -1608010240, -81576032, 8313490269, -9921126365, -30119890772, 88120588898, 44244248328, -505045957225
OFFSET
0,1
LINKS
Hirschhorn, Michael D., Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.
FORMULA
From Colin Barker, Dec 27 2017: (Start)
G.f.: (2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4).
a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.
(End)
MATHEMATICA
LinearRecurrence[{-1, -5, 1, -1}, {2, -4, -5, 27}, 40] (* Harvey P. Dale, May 26 2018 *)
PROG
(PARI) Vec((2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017
CROSSREFS
Cf. A199802.
Sequence in context: A036985 A179133 A277371 * A126666 A036983 A370438
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 12 2011
STATUS
approved