login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179133
Denominators of A178381(4*n+3)/A178381(4*n+2).
7
2, 4, 5, 26, 68, 89, 466, 1220, 1597, 8362, 21892, 28657, 150050, 392836, 514229, 2692538, 7049156, 9227465, 48315634, 126491972, 165580141, 866988874, 2269806340, 2971215073, 15557484098, 40730022148, 53316291173, 279167724890
OFFSET
0,1
COMMENTS
For the numerators see A128052.
FORMULA
a(n) = A179134(n)*A153727(n+1)/2.
Lim_{n->infinity} A128052(n+1)/A179133(n) = 1+cos(Pi/5) = A296182.
From Colin Barker, Jun 27 2013: (Start)
G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)).
a(n) = 18*a(n-3)-a(n-6). (End)
From Greg Dresden, Oct 16 2021: (Start)
a(3*n) = 2*Fibonacci(6*n+1),
a(3*n+1) = 2*Fibonacci(6*n+3),
a(3*n+2) = Fibonacci(6*n+5). (End)
MAPLE
with(GraphTheory): nmax:=120; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1, k], k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+3)/A178381(4*n+2)) od: seq(a(n), n=0..nmax/4-1);
MATHEMATICA
Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3],
Fibonacci[6 n + 5]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
LinearRecurrence[{0, 0, 18, 0, 0, -1}, {2, 4, 5, 26, 68, 89}, 30] (* Harvey P. Dale, Oct 08 2024 *)
KEYWORD
easy,frac,nonn
AUTHOR
Johannes W. Meijer, Jul 01 2010
STATUS
approved