Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Oct 08 2024 12:49:44
%S 2,4,5,26,68,89,466,1220,1597,8362,21892,28657,150050,392836,514229,
%T 2692538,7049156,9227465,48315634,126491972,165580141,866988874,
%U 2269806340,2971215073,15557484098,40730022148,53316291173,279167724890
%N Denominators of A178381(4*n+3)/A178381(4*n+2).
%C For the numerators see A128052.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,18,0,0,-1).
%F a(n) = A179134(n)*A153727(n+1)/2.
%F Lim_{n->infinity} A128052(n+1)/A179133(n) = 1+cos(Pi/5) = A296182.
%F From _Colin Barker_, Jun 27 2013: (Start)
%F G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)).
%F a(n) = 18*a(n-3)-a(n-6). (End)
%F From _Greg Dresden_, Oct 16 2021: (Start)
%F a(3*n) = 2*Fibonacci(6*n+1),
%F a(3*n+1) = 2*Fibonacci(6*n+3),
%F a(3*n+2) = Fibonacci(6*n+5). (End)
%p with(GraphTheory): nmax:=120; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+3)/A178381(4*n+2)) od: seq(a(n),n=0..nmax/4-1);
%t Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3],
%t Fibonacci[6 n + 5]}, {n, 0, 10}]] (* _Greg Dresden_, Oct 16 2021 *)
%t LinearRecurrence[{0,0,18,0,0,-1},{2,4,5,26,68,89},30] (* _Harvey P. Dale_, Oct 08 2024 *)
%Y Cf. A000045, A128052, A153727, A178381, A179131, A179132, A179133, A179134, A296182.
%K easy,frac,nonn
%O 0,1
%A _Johannes W. Meijer_, Jul 01 2010