login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Meanders of length n and central angle < 360 degrees.
3

%I #13 Aug 11 2014 22:45:47

%S 0,1,1,4,1,15,1,41,23,133,1,650,1,1725,961,6930,1,30323,1,99716,40431,

%T 352729,1,1709125,35467,5200315,2008233,20960538,1,93058849,1,

%U 312220259,105533203,1166803129,20194059,5478229800,1,17672631921,5731781295,71539226243,1

%N Meanders of length n and central angle < 360 degrees.

%C A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.

%C a(n) = 1 if and only if n is prime.

%H Peter Luschny, <a href="/A200062/b200062.txt">Table of n, a(n) for n = 1..1000</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/Meander">Meander</a>.

%F a(n) = Sum_{d|n} A198060(d-1,n/d-1) - 2^(n-1).

%e See the link for n = 6,8,9.

%p A200062 := proc(n) local i;

%p add(A198060(i-1,n/i-1),i=numtheory[divisors](n)) - 2^(n-1) end: seq(A200062(i),i=1..41);

%t A198060[m_, n_] := Sum[ Sum[ Sum[ (-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1) * (n+1)^j * (k+1)^(m-j) / (k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}] - 2^(n-1); Table[a[n], {n, 1, 41}] (* _Jean-François Alcover_, Jun 27 2013 *)

%o (PARI)

%o A200062(n) = { D = divisors(n);

%o sum(m = 2, #D, d = D[m];

%o sum(k=0,n/d-1,binomial(n/d-1,k)^d*

%o sum(j=0,d-1,((n/d)/(k+1))^j*

%o sum(i=0,d-1,(-1)^(j+i)*binomial(i,j)

%o ))))}

%Y Cf. A198060, A199932.

%K nonn

%O 1,4

%A _Peter Luschny_, Nov 16 2011