login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104881
Triangle T(n,k) = Sum_{j=0..k} (n-k)^(k-j), read by rows.
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 15, 5, 1, 1, 6, 21, 40, 31, 6, 1, 1, 7, 31, 85, 121, 63, 7, 1, 1, 8, 43, 156, 341, 364, 127, 8, 1, 1, 9, 57, 259, 781, 1365, 1093, 255, 9, 1, 1, 10, 73, 400, 1555, 3906, 5461, 3280, 511, 10, 1, 1, 11, 91, 585, 2801, 9331, 19531, 21845, 9841, 1023, 11, 1
OFFSET
0,5
COMMENTS
Reverse of triangle A104878.
FORMULA
T(n, k) = Sum_{j=0..k} (n-k)^(k-j).
Sum_{k=0..n} T(n, k) = A104879(n).
Sum_{k=0..floor(n/2)} T(k, n-k) = A104882(n).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 15, 5, 1;
MATHEMATICA
T[n_, k_]:= If[k==n, 1, Sum[(n-k)^(k-j), {j, 0, k}]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 15 2021 *)
PROG
(Magma) [(&+[ (n-k)^(k-j): j in [0..k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 15 2021
(Sage) flatten([[sum((n-k)^(k-j) for j in (0..k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021
CROSSREFS
Cf. A104878, A104879 (row sums), A104882 (diagonal sums).
Sequence in context: A327913 A028657 A053534 * A171699 A104878 A196863
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 28 2005
STATUS
approved