login
A104878
A sum-of-powers number triangle.
13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
OFFSET
0,5
COMMENTS
Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020
FORMULA
T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 15, 13, 5, 1;
1, 6, 31, 40, 21, 6, 1;
...
MAPLE
A104878 :=proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n, k), k=0..n) od; seq(seq(A104878(n, k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011
CROSSREFS
Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.
Sequence in context: A053534 A104881 A171699 * A196863 A196922 A135597
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 28 2005
STATUS
approved