login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104877
Semiprimes of the form primorial(k) + 1.
1
30031, 9699691, 223092871, 13082761331670031, 117288381359406970983271, 7858321551080267055879091, 40729680599249024150621323471, 267064515689275851355624017992791
OFFSET
1,1
LINKS
Sebastian Martin Ruiz, A Result on Prime Numbers, Math. Gaz. 81, 269, 1997.
Eric Weisstein's World of Mathematics, Primorial.
Eric Weisstein's World of Mathematics, Semiprime.
FORMULA
n# + 1 iff semiprime. Equals {A002110(i) + 1} intersection {A001358(j)}.
EXAMPLE
6# + 1 = 2*3*5*7*11*13 + 1 = 30031 = 59 x 509.
8# + 1 = 2*3*5*7*11*13*17*19 + 1 = 9699691 = 347 x 27953.
9# + 1 = 2*3*5*7*11*13*17*19*23 + 1 = 223092871 = 317 x 703763.
14# + 1 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43 + 1 = 13082761331670031 = 167 x 78339888213593.
MATHEMATICA
Bigomega[n_]:=Plus@@Last/@FactorInteger[n]; SemiprimeQ[n_]:=Bigomega[n]==2; Primorial[n_]:=Product[Prime[i], {i, n}]; Select[Table[Primorial[n]+1, {n, 30}], SemiprimeQ] (* Ray Chandler, Mar 28 2005 *)
Select[FoldList[Times, Prime[Range[30]]]+1, PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 13 2022 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 28 2005
STATUS
approved