This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057705 Primorial primes: primes p such that p+1 is a primorial number (A002110). 18
 5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309, 19361386640700823163471425054312320082662897612571563761906962414215012369856637179096947335243680669607531475629148240284399976569 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS C. Caldwell's The Top Twenty, Primorial. R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012 FORMULA a(n) = A002110(A057704(n)) - 1. MATHEMATICA lst={}; r=1; Do[p=Prime[n]; r=r*p; q=r-1; If[PrimeQ[q], (*Print[p]; *)AppendTo[lst, q]], {n, 1, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *) Select[FoldList[Times, 1, Prime[Range[70]]], PrimeQ[#-1]&]-1 (* Harvey P. Dale, Jan 27 2014 *) PROG (Haskell) a057705 n = a057705_list !! (n-1) a057705_list = filter ((== 1) . a010051) a057588_list -- Reinhard Zumkeller, Mar 27 2013 CROSSREFS See A006794 and A057704 (the main entries for this sequence) for more terms. Cf. A014545, A002110. Cf. A010051; subsequence of A057588. Sequence in context: A046842 A175905 A057706 * A237188 A086720 A056869 Adjacent sequences:  A057702 A057703 A057704 * A057706 A057707 A057708 KEYWORD nonn,nice AUTHOR Labos Elemer, Oct 24 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 30 21:08 EST 2015. Contains 264673 sequences.