login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237188
Smallest member of Sophie Germain pair, where each member of the prime pair is the smallest of its prime triple (p, p+2, p+8).
3
5, 29, 2549, 6269, 41609, 259379, 418349, 492059, 514049, 521879, 819029, 1171199, 1659809, 1994339, 2014139, 2325509, 2327399, 2392139, 2420699, 2481179, 2844269, 3142829, 3393359, 3637169, 3990029
OFFSET
1,1
COMMENTS
It is not known if there are infinitely many Sophie Germain pairs with this property.
The sequence is infinite under Dickson's conjecture. Aside from a(1) = 5, all terms are 29 or 179 mod 210. - Charles R Greathouse IV, Feb 05 2014
LINKS
Abhiram R Devesh and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 135 terms from Devesh)
Eric Weisstein's World of Mathematics, Sophie Germain Prime
EXAMPLE
a(1): p = 5; (2*p)+1 = 11
Prime triples (5,7,13);(11,13,19)
a(2): p = 29; (2*p)+1=59
Prime triples (29,31,37);(59,61,67)
MATHEMATICA
sgpQ[n_]:=Module[{sg=2n+1}, AllTrue[Flatten[{sg+{0, 2, 8}, n+{2, 8}}], PrimeQ]]; Select[Prime[ Range[ 300000]], sgpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 02 2016 *)
PROG
(Python)
p1=2
n=2
count=0
while p1>2:
....## Generate the a chain of numbers with length 4
....cc=[]
....cc.append(p1)
....for i in range(1, n):
........cc.append((2**(i)*p1+((2**i)-1)))
....## chain entries + 2
....cc2=[c+2 for c in cc]
....## chain entries + 8
....cc8=[c+8 for c in cc]
....## check if cc is a Sophie Germain Pair or not
....## pf.isp_list returns True or false for a given list of numbers
....## if they are prime or not
....##
....pcc=pf.isp_list(cc)
....pcc2=pf.isp_list(cc2)
....pcc8=pf.isp_list(cc8)
....## Number of primes for cc
....npcc=pcc.count(True)
....## Number of primes for cc2
....npcc2=pcc2.count(True)
....## Number of primes for cc8
....npcc8=pcc8.count(True)
....if npcc==n and npcc2==n and npcc8==n:
........print "For length ", n, " the series is : ", cc, " , ", cc2, " and ", cc8
....p1=pf.nextp(p1)
(PARI) is(n)=isprime(n) && isprime(n+2) && isprime(n+8) && isprime(2*n+1) && isprime(2*n+3) && isprime(2*n+9) \\ Charles R Greathouse IV, Feb 05 2014
CROSSREFS
Cf. A005384.
Sequence in context: A175905 A057706 A057705 * A371347 A086720 A056869
KEYWORD
nonn
AUTHOR
Abhiram R Devesh, Feb 04 2014
STATUS
approved