login
A218745
a(n) = (42^n - 1)/41.
4
0, 1, 43, 1807, 75895, 3187591, 133878823, 5622910567, 236162243815, 9918814240231, 416590198089703, 17496788319767527, 734865109430236135, 30864334596069917671, 1296302053034936542183, 54444686227467334771687, 2286676821553628060410855, 96040426505252378537255911
OFFSET
0,3
COMMENTS
Partial sums of powers of 42 (A009986).
FORMULA
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-42*x)).
a(n) = 43*a(n-1) - 42*a(n-2).
a(n) = floor(42^n/41). (End)
E.g.f.: exp(x)*(exp(41*x) - 1)/41. - Elmo R. Oliveira, Aug 29 2024
MATHEMATICA
LinearRecurrence[{43, -42}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(42^Range[0, 20]-1)/41 (* Harvey P. Dale, May 08 2024 *)
PROG
(PARI) A218745(n)=42^n\41
(Magma) [n le 2 select n-1 else 43*Self(n-1) - 42*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Maxima) A218745(n):=(42^n-1)/41$
makelist(A218745(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved