login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003046 Product of first n Catalan numbers.
(Formerly M1987)
21
1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, 38883505145515430400, 2285805733484270091494400, 475475022233529990271933132800, 353230394017289429773019124357120000, 944693494975599542562153266945656012800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The volume of a certain polytope (see Chan et al. reference). However, no combinatorial explanation for this is known.

REFERENCES

H. W. Gould, A class of binomial sums and a series transformation, Utilitas Math., 45 (1994), 71-83.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..60

V. Baldoni and M. Vergne, Kostant Partitions Functions and Flow Polytopes, Transform. Groups. 13 (2008), 447-469.

C. S. Chan et al., On the volume of a certain polytope">On the volume of a certain polytope, Experimental Mathematics, 9 (2000), 91-99.

S. Corteel, J. S. Kim and K. Mészáros, Flow polytopes with Catalan volumes, C. R. Math., 355 (2017), 248-259.

K. Mészáros and A. H. Morales, Flow polytopes of signed graphs and the Kostant partition function, IMRN 3 (2015), 830-871.

J. W. Moon and M. Sobel, Enumerating a class of nested group testing procedures, J. Combin. Theory, B23 (1977), 184-188.

J. W. Moon, R. K. Guy, and N. J. A. Sloane, Correspondence, 1973

D. Zeilberger, Proof of a Conjecture of Chan, Robbins and Yuen, arXiv:math/9811108 [math.CO], 1998.

Index to divisibility sequences

FORMULA

C(0)*C(1)*...*C(n), C() = A000108 = Catalan numbers.

a(n) = Sqrt[(2^n)*A069640(n)/(2*n+1)!/n! ], n>0, where A069640(n) is an inverse determinant of n X n Hilbert-like Matrix with elements M(i,j)=1/(i+j+1). - Alexander Adamchuk, May 17 2006

a(n) ~ A^(3/2) * 2^(n^2+n-19/24) * exp(3*n/2-1/8) / (n^(3*n/2+15/8) * Pi^(n/2+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

a(n) = A^(3/2)*2^(n^2+n-1/24)*BarnesG(n+3/2)/(exp(1/8)*Pi^(n/2+1/4)*BarnesG(n+3)), where BarnesG( ) is the Barnes G-function and A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Mar 16 2017

MAPLE

seq(mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); # Zerinvary Lajos, Jul 02 2008

MATHEMATICA

a[n_] := Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 05 2012 *)

FoldList[Times, 1, CatalanNumber[Range[20]]] (* Harvey P. Dale, Apr 29 2013 *)

Table[(2^(n^2+n-1/24) Glaisher^(3/2) BarnesG[n+3/2])/(Exp[1/8] Pi^(n/2+1/4) BarnesG[n+3]), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)

PROG

(Haskell)

a003046 n = a003046_list !! n

a003046_list = scanl1 (*) a000108_list

-- Reinhard Zumkeller, Oct 01 2012

CROSSREFS

Cf. A003047, A000108, A055746, A069640, A005249, A051575, A067689, A074962.

Sequence in context: A014228 A059475 A156296 * A294115 A137884 A057565

Adjacent sequences:  A003043 A003044 A003045 * A003047 A003048 A003049

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(15) added by Harvey P. Dale, Apr 29 2013

Typo in second formula corrected by Vaclav Kotesovec, Nov 13 2014

Links added by Alejandro H. Morales, Jan 26 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 07:59 EDT 2020. Contains 336477 sequences. (Running on oeis4.)