login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003046 Product of first n Catalan numbers.
(Formerly M1987)
19
1, 1, 2, 10, 140, 5880, 776160, 332972640, 476150875200, 2315045555222400, 38883505145515430400, 2285805733484270091494400, 475475022233529990271933132800, 353230394017289429773019124357120000, 944693494975599542562153266945656012800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The volume of a certain polytope (see Chan et al. reference). However, no combinatorial explanation for this is known.

REFERENCES

H. W. Gould, A class of binomial sums and a series transformation, Utilitas Math., 45 (1994), 71-83.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..60

C. S. Chan et al., On the volume of a certain polytope">On the volume of a certain polytope, Experimental Mathematics, 9 (2000), 91-99.

J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002; see Conjecture 4.

J. W. Moon and M. Sobel, Enumerating a class of nested group testing procedures, J. Combin. Theory, B23 (1977), 184-188.

J. W. Moon, R. K. Guy, and N. J. A. Sloane, Correspondence, 1973

D. Zeilberger, Proof of a Conjecture of Chan, Robbins and Yuen, arXiv:math/9811108 [math.CO], 1998.

Index to divisibility sequences

FORMULA

C(0)*C(1)*...*C(n), C() = A000108 = Catalan numbers.

a(n) = Sqrt[(2^n)*A069640(n)/(2*n+1)!/n! ], n>0, where A069640(n) is an inverse determinant of n X n Hilbert-like Matrix with elements M(i,j)=1/(i+j+1). - Alexander Adamchuk, May 17 2006

a(n) ~ A^(3/2) * 2^(n^2+n-19/24) * exp(3*n/2-1/8) / (n^(3*n/2+15/8) * Pi^(n/2+1)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014

a(n) = A^(3/2)*2^(n^2+n-1/24)*BarnesG(n+3/2)/(exp(1/8)*Pi^(n/2+1/4)*BarnesG(n+3)), where BarnesG( ) is the Barnes G-function and A is the Glaisher-Kinkelin constant (A074962). - Ilya Gutkovskiy, Mar 16 2017

MAPLE

seq(mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); # Zerinvary Lajos, Jul 02 2008

MATHEMATICA

a[n_] := Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] (* Jean-Fran├žois Alcover, Dec 05 2012 *)

FoldList[Times, 1, CatalanNumber[Range[20]]] (* Harvey P. Dale, Apr 29 2013 *)

Table[(2^(n^2+n-1/24) Glaisher^(3/2) BarnesG[n+3/2])/(Exp[1/8] Pi^(n/2+1/4) BarnesG[n+3]), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2015 *)

PROG

(Haskell)

a003046 n = a003046_list !! n

a003046_list = scanl1 (*) a000108_list

-- Reinhard Zumkeller, Oct 01 2012

CROSSREFS

Cf. A003047, A000108, A055746, A069640, A005249, A051575, A067689, A074962.

Sequence in context: A014228 A059475 A156296 * A294115 A137884 A057565

Adjacent sequences:  A003043 A003044 A003045 * A003047 A003048 A003049

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(15) added by Harvey P. Dale, Apr 29 2013

Typo in second formula corrected by Vaclav Kotesovec, Nov 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 06:05 EST 2017. Contains 295937 sequences.