login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/(1-x)^2)*c(x/(1-x)^4) where c(x) is the g.f. of A000108.
7

%I #25 Jul 30 2023 09:20:04

%S 1,3,11,50,255,1391,7939,46821,283081,1745212,10929625,69338213,

%T 444668749,2877994064,18774736487,123321704739,814930698217,

%U 5413955476648,36138368789601,242252716083298,1630170332414433

%N Expansion of (1/(1-x)^2)*c(x/(1-x)^4) where c(x) is the g.f. of A000108.

%C Partial sums of A162476.

%H Seiichi Manyama, <a href="/A162477/b162477.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - x/((1 - x)^2 - ... (continued fraction);

%F a(n) = Sum_{k=0..n} C(n+3k+1,n-k)*A000108(k).

%F Conjecture: (n+1)*a(n) +4*(1-2*n)*a(n-1) +6*(n-2)*a(n-2) +2*(7-2*n)*a(n-3) +(n-5)*a(n-4) = 0. - _R. J. Mathar_, Nov 17 2011

%F G.f.: (1 - 2*x + x^2 - sqrt(1 - 8*x + 6*x^2 - 4*x^3 + x^4))/(2*x). Remark: using this form of the g.f., it is straightforward to prove the above conjectured recurrence. - _Emanuele Munarini_, Aug 31 2017

%F G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - x)^2. - _Ilya Gutkovskiy_, Jun 30 2020

%F G.f.: 1/G(x), where G(x) = 1 - (3*x - x^2)/(1 - x/G(x)) (continued fraction). - _Nikolaos Pantelidis_, Jan 08 2023

%t Table[Sum[Binomial[n+3k+1,4k+1]CatalanNumber[k],{k,0,n}],{n,0,100}] (* _Emanuele Munarini_, Aug 31 2017 *)

%o (Maxima) makelist(sum(binomial(n+3*k+1,4*k+1)*binomial(2*k,k)/(k+1),k,0,n),n,0,12); /* _Emanuele Munarini_, Aug 31 2017 */

%Y Cf. A000108, A086616, A162476.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 04 2009