The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249078 E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k). 10
 1, 1, 4, 17, 96, 595, 4516, 37104, 351020, 3604001, 41007240, 502039444, 6703536516, 95376507135, 1459072099824, 23677731306350, 408821193129564, 7443839953433701, 143258713990271960, 2893053522512463984, 61396438056305204020, 1362146168353191078195, 31605702195327725326560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..100 EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 96*x^4/4! + 595*x^5/5! +... such that A(x) = exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k). More explicitly, P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +... We can illustrate the initial terms a(n) in the following manner. The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: q(0) = 1.7182818284590452... q(1) = 1.7182818284590452... q(2) = 4.1548454853771357... q(3) = 12.901100113049497... q(4) = 56.223782393706533... q(5) = 285.72331242073065... q(6) = 1801.2869693388211... q(7) = 12727.542479311217... q(8) = 104411.81066734227... q(9) = 947120.40724315491... and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; from which we can generate this sequence like so: a(0) = exp(1)*1 - q(0) = 1; a(1) = exp(1)*1 - q(1) = 1; a(2) = exp(1)*3 - q(2) = 4; a(3) = exp(1)*11 - q(3) = 17; a(4) = exp(1)*56 - q(4) = 96; a(5) = exp(1)*324 - q(5) = 595; a(6) = exp(1)*2324 - q(6) = 4516; a(7) = exp(1)*18332 - q(7) = 37104; a(8) = exp(1)*167544 - q(8) = 351020; ... PROG (PARI) \p100 \\ set precision {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 {Q=Vec(serlaplace(sum(n=1, 201, prod(k=1, n, 1./(k-x^k +O(x^31)))))); } for(n=0, 30, print1(round(exp(1)*P[n+1]-Q[n+1]), ", ")) CROSSREFS Cf. A007841, A249474, A249475, A249476, A249477, A249478, A249480. Sequence in context: A067084 A123750 A278644 * A353546 A024052 A128321 Adjacent sequences:  A249075 A249076 A249077 * A249079 A249080 A249081 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 10:14 EDT 2022. Contains 356080 sequences. (Running on oeis4.)