login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249477
E.g.f.: exp(4)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 4^n/Product_{k=1..n} (k - x^k).
6
1, 1, 7, 47, 360, 2884, 26068, 250140, 2659544, 30188024, 373401768, 4911407656, 69701336160, 1046114985408, 16770977757888, 283455401409920, 5076208319560320, 95434083840830080, 1890657361059194240, 39170792604756397440, 850920224456551054336, 19275340855527901297152
OFFSET
0,3
COMMENTS
The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 47*x^3/3! + 360*x^4/4! + 2884*x^5/5! +...
such that A(x) = exp(4)*P(x) - Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} 4^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 4/(1-x) + 4^2/((1-x)*(2-x^2)) + 4^3/((1-x)*(2-x^2)*(3-x^3)) + 4^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 4^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 53.59815003314423907811...
q(1) = 53.59815003314423907811...
q(2) = 156.7944500994327172343...
q(3) = 553.5796503645866298592...
q(4) = 2697.496401856077388374...
q(5) = 14805.80061073873346130...
q(6) = 100818.1006770272116175...
q(7) = 750753.2864076001907799...
q(8) = 6488048.449153118392102...
q(9) = 61223693.06709220629587...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(4)*1 - q(0) = 1;
a(1) = exp(4)*1 - q(1) = 1;
a(2) = exp(4)*3 - q(2) = 7;
a(3) = exp(4)*11 - q(3) = 47;
a(4) = exp(4)*56 - q(4) = 360;
a(5) = exp(4)*324 - q(5) = 2884;
a(6) = exp(4)*2324 - q(6) = 26068;
a(7) = exp(4)*18332 - q(7) = 250140;
a(8) = exp(4)*167544 - q(8) = 2659544; ...
PROG
(PARI) \p100 \\ set precision
{P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
{Q=Vec(serlaplace(sum(n=1, 201, 4^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
for(n=0, 30, print1(round(exp(4)*P[n+1]-Q[n+1]), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2014
STATUS
approved