The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108434 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have no hills of the form ud (a hill is either a ud or a Udd starting at the x-axis). 2
 1, 1, 7, 47, 361, 2977, 25775, 231103, 2127409, 19990241, 190957559, 1848911279, 18104425561, 178975914433, 1783843502047, 17906040994559, 180858717257185, 1836792828317761, 18745545101801063, 192145823547338927 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Column 0 of A108433. The radius of convergence of g.f. y(x) is r = (5*sqrt(5)-11)/2, with y(r) = (2+sqrt(5))/3. - Vaclav Kotesovec, Mar 17 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370. FORMULA G.f. = 1/(1+z-zA-zA^2), where A=1+zA^2+zA^3 or, equivalently, A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307). G.f. y(x) satisfies: -1+y + 3*x*y - 3*x*(1+x)*y^2 + x*(-1+2*x+x^2)*y^3 = 0. - Vaclav Kotesovec, Mar 17 2014 a(n) ~ (11+5*sqrt(5))^n * sqrt(123 + 55*sqrt(5)) / (9 * 5^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n+3/2)). - Vaclav Kotesovec, Mar 17 2014 a(n) ~ phi^(5*n + 5) / (18 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 23 2017 D-finite with recurrence n*(2*n+1)*(n-2)*a(n) +2*(-13*n^3+36*n^2-29*n+9)*a(n-1) +4*(n-1)*(10*n^2-20*n+9)*a(n-2) +2*(13*n^3-42*n^2+41*n-9)*a(n-3) +n*(n-2)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 26 2022 EXAMPLE a(2)=7 because we have uudd, uUddd, UddUdd, Ududd, UdUddd, Uuddd and UUdddd. MAPLE g:=1/(1+z-z*A-z*A^2): A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3:gser:=series(g, z=0, 27): 1, seq(coeff(gser, z^n), n=1..24); PROG (PARI) {a(n)=local(y=1+x); for(i=1, n, y=-(-1 + 3*x*y - 3*x*(1+x)*y^2 + x*(-1+2*x+x^2)*y^3) + (O(x^n))^3); polcoeff(y, n)} for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 17 2014 CROSSREFS Cf. A027307, A108431, A108432, A108433. Sequence in context: A001711 A088057 A249477 * A349255 A093173 A218761 Adjacent sequences: A108431 A108432 A108433 * A108435 A108436 A108437 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 03 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:12 EST 2022. Contains 358672 sequences. (Running on oeis4.)